A Beginner's View of Easy Moonbouncing...

By Bertrand Zauhar, VE2ZAZ ve2zaz@rac.ca http://ve2zaz.net

My Objective

- GET YOU INTERESTED IN WORKING EARTH-MOON-EARTH QSOs.
 - Most hams believe exotic equipment, huge antennas, and very high power are needed to work EME.
 - You can enjoy the thrill of moonbounce with a modest setup.
 - Basically the equipment you may already have.

This Presentation

- Why Moonbounce?
- The History
- A real challenge
- The Bands
- How Small a Station
- Visit VE2ZAZ EME
- Some Hints
- Optimize Noise Figure
- JT65
- The Software
- Moon Tracking
- Web References

W5UN – Mighty Big Antenna. 32 x 17 el. Yagis on 2m

Why Moonbounce?

- IT IS EXCITING!
 - Most fun in ham radio is making rare, unusual, or difficult contacts. EME is the pinnacle of ham radio achievement.
- ALLOWS TO WORK WORLDWIDE DX ON ANY BAND 6M UP.
 - No other unassisted mode provides this capability.
- MOTIVATES YOU TO LEARN MORE ABOUT COMMS THEORY
 - Propagation, noise, antenna phasing, polarization, space object tracking, etc.
- PROVIDES AN INCENTIVE TO BUILD BETTER ANTENNAS.
 - Complete EME arrays are not available commercially.

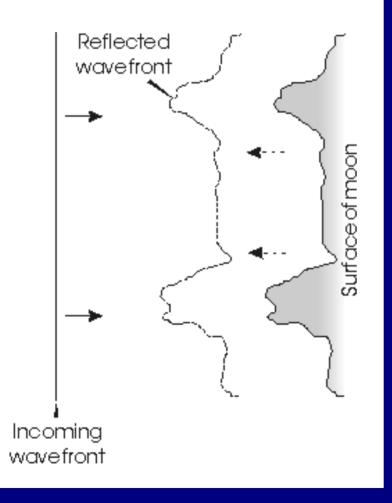
A Bit of EME History

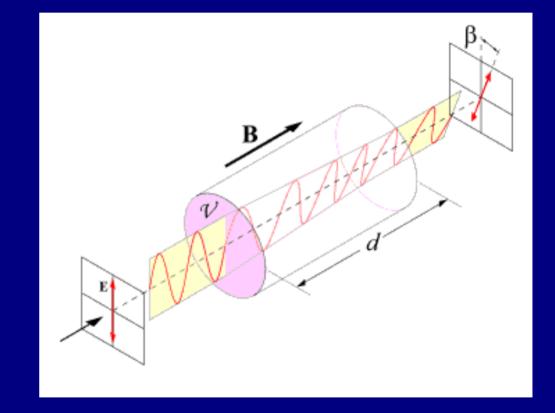
- 1946: First experiments by US Mil. in Project Diana. 3,000 watts at 111.5 MHz into dipole array
- Following years, Moon used for Teletype between mainland and Pearl Harbor
- 1953: First Amateur detection between W4AO and W3GK on 2m
- 1960: First EME QSO on 1296 MHz by W1BU club in MA.
- 1965: Arecibo Observatory Mounbounce contacts on 430 MHz with tens of kW !

The Anatomy of an EME QSO

- AVERAGE MOON DISTANCE: 384,000km
 - Average Round Trip: 770,000km!
 - Propagation Path Loss: 250+ dB!
 - Echo delay: ~ 2.4 Seconds
- 93% OF WAVE ABSORPTION BY MOON
 - Only 7% wave reflection
- ANGLES AND BEAMWIDTH
 - Moon is ~ 1 degree wide when seen from earth
 - Antenna is 0.00....1 degree wide when seen from the moon!

Impairments in an EME QSO


POLARIZATON OFFSET


- 90-degree polarization offset between stations, forget it!
 - FARADAY ROTATION: Polarization rotation due to lonosphere and earth's magnetic field. At 432MHz, up to 1.5 complete rotation, at 1296MHz 0.25 rotation. Negligible at higher F.
 - SPATIAL OFFSET: Geometry of the path between two stations.

LIBRATION FADING

- Signal fading caused by the movement of the moon and surface imperfections.
- The higher the frequency, the faster the fading
- COSMIC NOISE, SUN NOISE
 - When Moon has noisy sky in background, forget it!
 - When Sun and Moon line up, forget it!
- QRM, QRN...

Libration And Faraday Rotation

VE2ZAZ – January 2012

What Band to use?

- 50MHz: Not very popular: Big antennas, lots of QRN, no preamp required, KW+ a must. Difficult.
- 144MHz: Most popular band, tons of stations work random JT-65 QSOs. A pair of long boom yagis and 500-1000W will keep you active.
- 432MHz: Fewer stations, more difficult to work random. Activity Periods. A pair of long boom Yagis or 4 yagis a good entry point. 400W+ an asset. Preamp is a must. QRN nil!
- 1296MHz: More and more stations, probably more than on 432MHz. A 10+ foot dish is the way to go. 100W+ a must.
- 2304MHz: Fewer stations, must plan skeds. More exotic gear to generate the high output RF power. Skeds only.
- >2304MHz: Experiments, lots of experiments. TWTs, fancy stuff, waveguides. Some activity. Skeds only.

Big Guns are an Asset!

- THEY DO ALMOST ALL OF THE WORK!
- THERE ARE A LOT OF THEM, ESPECIALLY IN EUROPE.

HB9Q Club – 15m Dish (70cm, 23cm, 13cm), 8 x 19 el. Yagis (2m), 11 el. Yagi (6M)

How Small Can an EME Station Be?

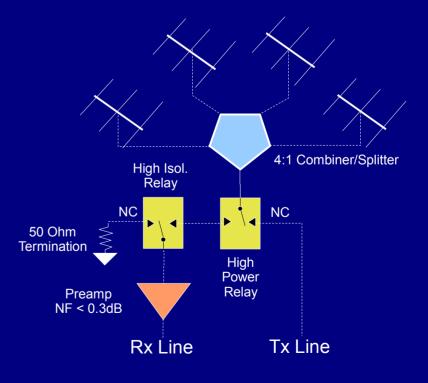
- 422MHz Single long-boom Yagi
- 80W
- No Preamp
- No Elevation Rotor

Success in JT-65!

- 4 x long-boom Yagis
- 45W
- Low NF Preamp

Success in CW!

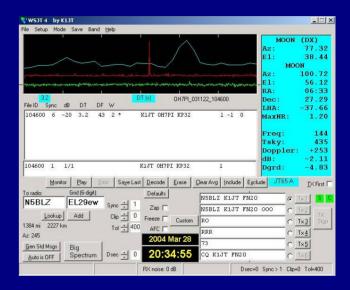
SIMPLE BASIC QSOs, NOT RAG CHEWING!


VA3TO – 2M EME, 112 Countries

432 EME at VE2ZAZ... Outdoors

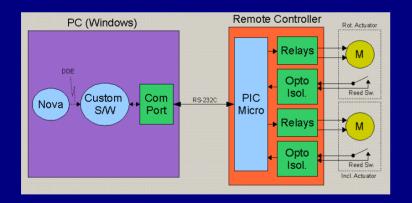
- ANT: 4 x 13 element DK7ZB Yagi array (~20 dBd Gain), home-made
- **PREAMP:** 20dB Gain, <0.3dB NF (ATF-54143), home-made
- FEEDLINE: Andrew LDF4-50 Heliax (Tx), RG-214 (Rx)
- SPLITTER: 4:1 Air dielectric round/square coaxial transformer, homemade
- ROTORS: Hy-Gain Tailtwister (azimuth), Yaesu G-550 (elevation)

432 EME at VE2ZAZ... Outdoors

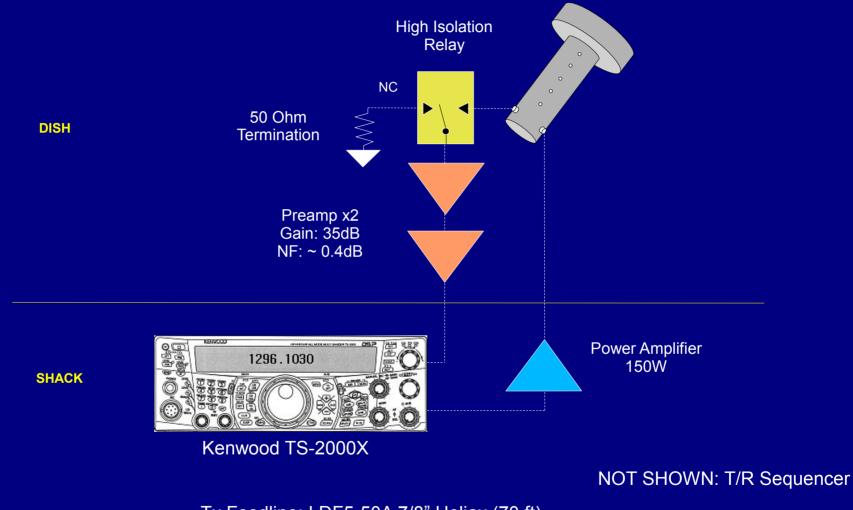


432 EME at VE2ZAZ... Indoors

- Rig: TS-790A (separated Tx and Rx ports)
- Amp: AM-6155 FAA amp (~300W)
- Sequencer: "At Last" Sequencer (VE2ZAZ)
- Audio Filter: JPS NIR-10 DSP
- PC and Sound Card:
 - WSJT Software
 - Spectran Sound analysis/filter Software
 - Nova For Windows tracking Software
 - NOUK JT-65 EME Logger Website
 - MultiKeyer CW Keyer Software



1296 EME at VE2ZAZ... Outdoors



- 3.2m (10.5ft) dish, VE4MA Feed (Super-Scalar Ring), Preamps.
- Azimuth-Over-Elevation Steering. East-to-South Coverage.

1296 EME at VE2ZAZ... RF Chain

Tx Feedline: LDF5-50A 7/8" Heliax (70 ft) Rx Feedline: LDF4-50A 1/2" Heliax (70 ft)

Some Hints for a Small EME Station

- Minimize Losses Between Antenna and Preamp.
 - Any attenuation is a direct deterioration of the Noise Figure.
 - Best possible coax. RG-214 not good enough. LMR series better.
 - Use N-Type connections everywhere, even at 144MHz.
- Rule out old Yagi designs
 - Constant element spacing not a good indication of modern design.
 - Modern modeled antenna designs are best. K1FO long boom design is a baseline.
- Every Watt Counts. Use the best possible TX feedline.
 - At >432MHz, Heliax or equiv. Is a MUST!

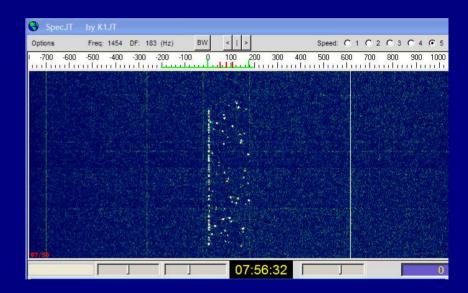
More Hints for a Small EME Station

- At 432MHz and Above, use a preamp with very low NF.
 NF < 0.5B recommended.
- Transverters Work Great
 - Are Cheaper.
 - Can be located remotely to minimize feedline losses.
- Operate When Moon Conditions are Best
 - The 2dB difference in path loss can "make or break" a QSO.
 - Avoid high sky noise.
- Exploit Ground Gain, up to 6 dB due to ground reflections.
 Especially applicable to 50MHz and 144 MHz

More EME Hints...

- Be careful about Amplifier Over-Stress from JT65.
 - JT65 runs 50 secs at full power, 70 secs off.
 - Use a fan on linear bricks. 24V fan on 13.8V is quiet and effective.
 - Derate output power (from p.e.p. specs) on tube-type amplifiers.
- Avoid Hot-Switching Coaxial Relays
 - Wears out contacts at much accelerated rate.
- Be on Frequency
 - Measure your TX frequency offset and compensate for it.
 - Use a Frequency Counter with a GPS Reference.
 - Especially applicable to 1296MHz and above.
 - Remember RX Doppler compensation...
 - The higher the F, the larger the Doppler (proportional)
 - At 432MHz Doppler varies +/- 1KHz.

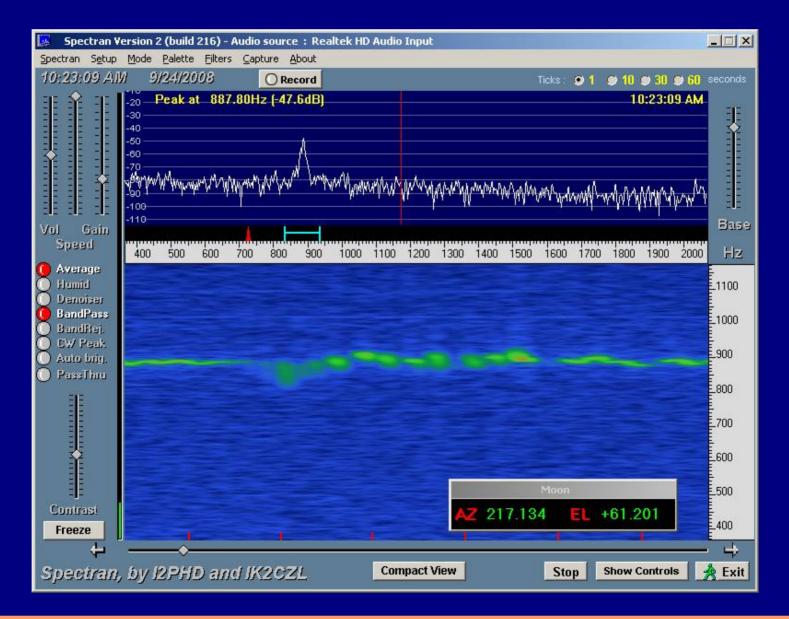
Even More EME Hints...


- Synchronize your PC to UTC Time
 - To the nearest second.
 - Win2K, WinXP, Vista have this built in.
- Polarization Control is an Asset
 - Feedpoint rotation on dishes.
 - Cross-Yagi array
- Watch for Coaxial Cable Power Handling Capability.
 - At 432MHz, surprisingly low.
 - RG-214 = ~ 300W
 - 9913 = ~ 400W
 - Another reason to use Heliax coaxial cable.

JT65 – The Small Station's Best Friend

- Modulation mode created by Joe Taylor K1JT in 2003
- Software actually called WSJT.
- Uses a PC and its sound card, Windows-based.
- DSP techniques optimized for extremely weak but slowlyvarying signals (e.g. meteor scatter and moonbounce)
- Uses 63-frequency shift keying with constant phase
 - Single tone and continuous phase: Usable on a non-linear transmitter and power amplifier!
- Decode signals many decibels below the noise floor, even without signals being audible to the human ear.
 - Forward Error Correction (FEC) used. 5.25:1 Redundancy Ratio
 - Fixed and Expected Message, Grid and Callsign Formats
 - CQ VE2ZAZ FN25
 - K2UYH VE2ZAZ FN25
 - O, RO, RRR, 73
 - Does averaging of several Rx messages
 - Uses Deep Search table (list of stations known to do EME)

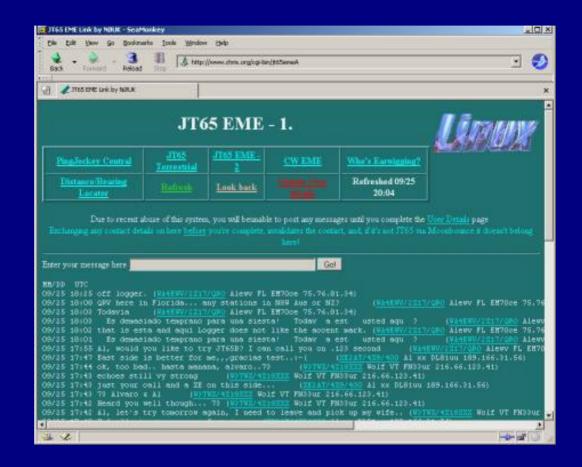
WSJT - JT65


😵 wsj	T 6	by К1ЈЛ	Ì							
File Setu	ip Vie	ew Mode	Decode	Save I	Band Help)				
-	~	- ~_	A_{res}	' ~~~				\sim		on 62.52 42.44 3
manth	mont	within	Manymon	montenin	And man an	Minhow	mannam	mmm	Dgrd:	-2.3
6.0 FileID	Sync	dB D	T DF W	Tim	e (s)	UT1PA	_070514_0755	00		
075000 075100 075300 075500	7 -	-7 0.3 12 1.2 11 1.2 11 1.8	229 1 5 3 5 3 5 3	*	CQ UT1P CQ UT1P OZ1PIF (1 000 1	0 0 0		×.
075500	2	2/2			CQ UT1PA	A K021	1	0		
Log QS	0	Stop	Monitor	Sa <u>v</u> e	Decode	Erase	<u>C</u> lear Avg	Include	E <u>x</u> clude	TxStop
	radio: rid:	UT1PA K021fc Az: 116			Sync 0 Clip 0 Tol 200 Defaults		Tx First Tx First Rpt Sh Msg TxDF = 0	UT1PA OZ UT1PA OZ R-11 RRR	1PIF R-11	© Tx1 C Tx2 C Tx2 C Tx3 C Tx4
15		07 Ma 7:56:		[Defaults Dsec 0.0	Shift 0.0	<u>G</u> enStdMsgs <u>Auto is ON</u>	73 CQ OZ1PIF	J065	С <u>Тх5</u> С Тх <u>6</u>
0.9999 0.	9999	JT65A	Freeze DF:	0 Rx n	oise: 0 dB	TR Period: 6	60 s		Txing: UT1PA	OZ1PIF R-11

The JT65 Controversy...

- "Deep Search" Lookup Controversy
 - Is it considered a complete copy of info for valid QSO?
- Not a true EME QSO? Too easy!
 - Endless Debate...
 - Solution will be to produce specific award classes for the EME digital modes

Spectran – Audio SA and Filter SW

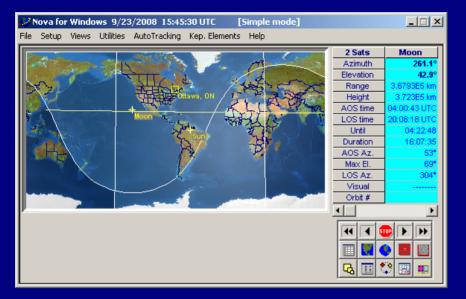


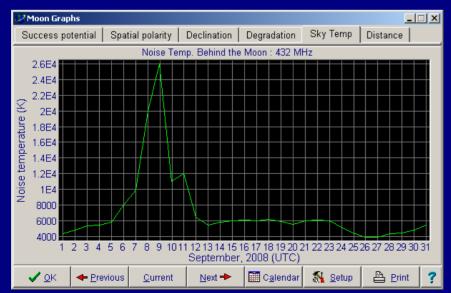
MultiKeyer – Auto CW Keyer SW

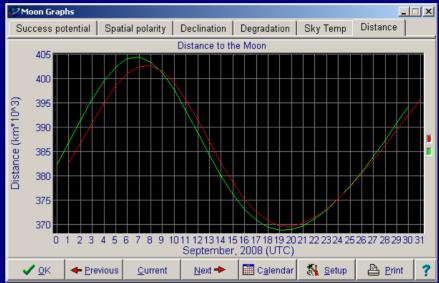
🚟 MultiKeyer		_	
<u>File E</u> dit <u>V</u> iew Setup Period Mo	de <u>H</u> elp		
Start Time: CW WPM:	{K1RQG DE VE2ZAZ}[R:120]	C IX1 IXF	rst 🗖
14:44:00 16 1	{K1RQG DE VE2ZAZ}[R:90]{%0}[R:30]	C TX2 S	02R
To Radio: Grid (6 digit): Report:	{K1RQG DE VE2ZAZ}[R:90]{K1RQG}[R:30]	C TX3	A
L - Duration (sec)	{K1RQG DE VE2ZAZ}[R:90]{VE2ZAZ}[R:30]	C TX4	TY 1
Lookup Seq: Pause:	(OR)[R:120]	C <u>T×5</u>	TX St <u>o</u> p
Gen Std Msgs	{R }[R:120]		
Auto is OFF 2008 Sep 24 14:43:12	(CQ DE VE2ZAZ VE2ZAZ VE2ZAZ)[R:120]	C TXZ Type	.
500 1000	1500 2000 2500 . l.	FIR Filter FFT Filter Filter Freq 12	30
		Filter Width 10	5
		Width @ -60 dB 20	3
Display Gain	Display Contrast Display Averaging		
, For Help, press F1			/,

NOUK JT-65 EME Logger

- A Must for both Skeds and Random QSOs
- Mostly 144MHz activity, but all bands are seen
- Other Logger Sites available
 - HB9Q EME Logger
 - ON4KST EME Chat




Moon Prediction


- Software (Current Position, Prediction, Sked planning, Mutual Visibility)
 - MoonSked \$
 - Nova \$
 - EME Systems
 - SatTrack (Linux)
 - Winorbit
 - ...
- Internet Applets (Current Position)
 - Sun, Earth and Moon Applet
 - http://www.jgiesen.de/SME/
 - Sun & Moon Position Calculator
 - http://www.satellite-calculations.com/Satellite/suncalc.htm

- ...

Moon Prediction – Nova

Z	🖉 Listing Data for Sun												
	On	e Observer		One	Observer AOS	/LOS		Two Observers Az/El					
٦	rwo Observ	rers, One Sat	ellite Mutua	al Multiple	Multiple Observers, One Satellite 📔 Two Observers, Multiple Satelli					tual			
		M	lutual wind	low		Ottaw	/a, ON	Washing	gton, DC	-			
[Date (Z)	Start (Z)	End (Z)	Duration	Between	Az/El@Start	Az/El @ End	Az/El@Start	Az/El @ End				
			Sun p	position on Tue	esday, Septem	iber 23, 2008	(UTC)						
9	9/23/08	11:01:17	22:52:41	11:51:23		091°/001°	269°/000°	090°/000°	268°/001°				
			Sun po	sition on Wed	nesday, Septe	mber 24, 200	08 (UTC)						
9	9/24/08	11:02:12	22:50:45	5 11:48:33	12:09:31	092°/001°	269°/000°	091°/000°	268°/001°				
Sun position on Thursday, September 25, 2008 (UTC)													
9	9/25/08	08 11:03:07 22:48:50 11:45:43 12:12:21 092°/001° 268°/000° 091°/000° 267°/001°											
			Sun	position on Fr	iday, Septemb	er 26, 2008	(UTC)						
9	9/26/08	11:04:02	22:46:55	5 11:42:53	12:15:11	093°/001°	268°/000°	092°/000°	267°/001°				
			Sun p	osition on Sat	urday, Septem	nber 27, 2008	B (UTC)						
9	9/27/08	11:04:57	22:45:00) 11:40:02	12:18:02	093°/001°	267°/000°	092°/000°	266°/001°				
			Sun	position on Su	nday, Septeml	ber 28, 2008	(UTC)						
9	9/28/08	11:05:52	22:43:05	5 11:37:12	12:20:52	094°/001°	267°/000°	093°/000°	266°/001°				
	Sun position on Monday, September 29, 2008 (UTC)												
	<u>C</u> lose	🔳 <u>R</u> eC	Calc 🧃	👓 <u>S</u> top	👺 ⊻isible?	🛛 🚮 Setu	up 😿	I 🗘 🖉	à 📴 🗚	?			

QSLs are a Must for EME

- Get your QSL design refreshed!
- Paper QSLs are still very popular within EME community.
- Nice trophies for a Small Station!
- QSL is normally sent Direct, not Via Buro.

Some References

- Moon-Net Email Reflector
 - http://mailman.pe1itr.com/mailman/listinfo/moon-net
- 144MHz EME Newsletter
 - http://www.df2zc.de/newsletter/index.html
- 432 and Above EME Newsletters by K2UYH.
 - http://www.nitehawk.com/rasmit/em70cm.html
- DUBUS EME Moon Calendar
 - http://www.marsport.org.uk/dubus/eme.htm
- VE2ZAZ's 3.2m Dish Project
 - http://ve2zaz.net/3.2m_Dish/3.2m_Dish.htm
- JT-65 Protocol Description
 - http://www.physics.princeton.edu/pulsar/K1JT/JT65.pdf

The WWW IS FULL OF EME STUFF!

Backup Slides

Optimize your Noise Figure

• A "typical" Setup

🔆 AppCAD - [NoiseCal									<u>- </u>		
Eile Calculate Application Examples Options Help											
NoiseCalc	<u>S</u> et	Number of S	tages = 5	C	alculate [F4]			Clear	Main Menu (F8)		
			Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	1			
	Stage Data	Units			_		_				
	Stage Name:		4 x Coax	Coupler+ Relays	Preamp	Соах	Radio				
	Noise Figure	dB	0.5	0.2	0.9	1.5	5				
	Gain	dB	-0.5	-0.2	20	-1.5	150				
	Output IP3	dBm	0	0	0	0	0				
	dNF/dTemp	dB/°C	0	0	0	0	0				
	dG/dTemp	dB/°C	0	0	0	0	0				
	Stage Analysis:		0	0	0	0	-				
	NF (Temp corr)	dB	0.50	0.20	0.90	1.50					
	Gain (Temp corr)	dB	-0.50	-0.20	20.00	-1.50					
	Input Power	dBm	0.00	-0.50	-0.70	19.30					
	Output Power	dBm	-0.50	-0.70	19.30	17.80					
	d NF/d NF	dB/dB	0.78	0.81	0.98	0.01	0.04				
	d NF/d Gain	dB/dB	-0.22	-0.19	-0.02	-0.02					
	d IP3/d IP3	dBm/dBm	0.00	0.00	0.00	0.00	1.00	I			
Enter System	Parameters:		System A	nalysis:							
Input Powe		dBm			<mark>7.80</mark> dB			67.80 dBi			
Analysis Te	emperature 25	°C	Noise Fi	gure = 1	.72 dB	Outp	out IP3 =	0.00 dBi	m		
Noise BW	1	MHz	Noise T					35.60 dBi			
Ref Tempe		°C			2.25 dB			35.60 dB	-		
S/N (for se		dB		4DS = -112		Output IN		i03.40 dBi			
Noise Sour	ce (Ref) 290	°К		tivity = -112		Output IN		35.60 dB	-		
			Noise F	-loor = -172	2.25 dBm/Hz		SFDR =	37.03 dE			
Normal	Click for Web: AP	PLICATION	NOTES - MOI	DELS - DESIG	N TIPS - DAT	A SHEETS - 9	S-PARAMETE	RS			

Optimize your Noise Figure

• A better setup

AppCAD - [NoiseCalc]												
<u>File Calculate Applicat</u>	<u>File Calculate Application Examples Options Help</u>											
NoiseCalc		<u>S</u> et	Number of S	tages = 5	C	alculate [F4]			Clear	Ma	ain Menu (F8)	
1				Stage 1	Stage 2	Stage 3	Stage 4	Stage 5				
	Stage Data		Units									
	Stage Name	a:		4 x Coav	Coupler+ Relays	Preamp	Соах	Radio				
	Noise Figure	e	dB	0.2	0.2	0.9	1.5	5				
	Gain		dB	-0.2	-0.2	20	-1.5	150				
	Output IP3		dBm	0	0	0	0	0				
	dNF/dTemp		dB/°C	0	0	0	0	0				
	dG/dTemp		dB/°C	0	0	0	0	0				
	Stage Ana	lysis:		0	0	0	0	0				
	NF (Temp c	(mo:	dB	0.20	0.20	0.90	1.50	5.00				
	Gain (Temp		dB	-0.20	-0.20	20.00	-1.50	150.00				
	Input Power		dBm	0.00	-0.20	-0.40	19.60	18.10				
	Output Pow	/er	dBm	-0.20	-0.40	19.60	18.10	168.10				
	d NF/d NF		dB/dB	0.78	0.81	0.98	0.01	0.04				
	d NF/d Gair		dB/dB	-0.22	-0.19	-0.02	-0.02	0.00				
	d IP3/d IP3		dBm/dBm	0.00	0.00	0.00	0.00	1.00	I			
Enter System	m Parameters:			System Ar	nalysis:							
Input Powe	er	0	dBm			8.10 dB				dBm		
· · ·	Analysis Temperature 25		°C	Noise Fig	gure 1	1.42 dB		ut IP3 =		dBm		
Noise BW			MHz	Noise T	•	2.22 °K				dBm		
	Femperature 25		°C			2.55 dB				dBC		
	S/N (for sensitivity) 0		dB			2.55 dBm	Output IN			dBm		
Noise Sour	Noise Source (Ref) 290		۴K		tivity = -112		Output IN			dBC		
				Noise F	'loor = -172	2.55 dBm/Hz		SFDR = -	37.03	dB		
Normal	Click for V	Veb: AF	PLICATION	NOTES - MOD	DELS - DESIG	IN TIPS - DAT	A SHEETS - 9	S-PARAMETE	RS			

Optimize your Noise Figure

• A Much Better Setup

🔆 AppCAD - [NoiseCal	_									_ 🗆 🗵
<u>File Calculate Applicat</u>	ion Examples	s <u>O</u> ptio	ns <u>H</u> elp							
NoiseCalc		<u>S</u> et	Number of S	tages = 5		alculate [F4]			Clear	Main Menu (F8)
				Stage 1	Stage 2	Stage 3	Stage 4	Stage 5		
	Stage Data		Units							
	Stage Nan	ne:		4 х Соах	Coupler+ Relays	Preamp	Соах	Radio		
	Noise Figu	re	dB	0.2	0.2	0.3	1.5	5		
	Gain		dB	-0.2	-0.2	20	-1.5	150		
	Output IP3	}	dBm	0	0		0	0		
	dNF/dTem	ηp	dB/*C	0	0	0	0	0		
	dG/dTemp)	dB/°C	0	0	0	0	0		
	Stage Analysis:			0	0	0	0	0		
	NF (Temp	corr)	dB	0.20	0.20	0.30	1.50	5.00		
	Gain (Tem	p corr)	dB	-0.20	-0.20	20.00	-1.50	150.00		
	Input Pow		dBm	0.00	-0.20	-0.40	19.60	18.10		
	Output Po		dBm	-0.20	-0.40	19.60	18.10	168.10		
	d NF/d NF		dB/dB	0.88	0.91	0.97	0.01	0.05		
	d NF/d Ga		dB/dB	-0.12	-0.09	-0.03	-0.02	0.00		
	d IP3/d IP	3	dBm/dBm	0.00	0.00	0.00	0.00	1.00		
Enter System	n Parameters:			System A						
Input Powe	er	0	dBm			8.10 dB	Inp	ut IP3 = -1	68.10 dB	m
Analysis Te	emperature	25	°C	Noise Fi	igure -	0.84 dB		ut IP3 =	0.00 dB	
Noise BW		1	MHz	Noise T		74 °K			36.20 dB	
Ref Tempe	erature	25	°C			3.14 dB			36.20 dB	
S/N (for se		0	dB			3.14 dBm	Output IM		04.30 dB	
Noise Sour	rce (Ref)	290	*K			3.14 dBm	Output IM		36.20 dB	-
				Noise I	Floor = -173	3.14 dBm/Hz		SFDR = 🖃 🚽	36.64 di	3
Normal	Click for	Web: AF	PLICATION	NOTES - MO	DELS - DESIG	N TIPS - DAT	A SHEETS - S	-PARAMETER	RS	

$$F_{sys} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1G_2} + \dots \frac{F_n - 1}{G_1G_2\dots G_{n-1}}$$